

Chemistry (Salters)

Advanced GCE A2 7887

Advanced Subsidiary GCE AS 3887

Mark Schemes for the Units

January 2007

3887/7887/MS/R/07J

Oxford Cambridge and RSA Examinations

OCR (Oxford Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2007

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annersley NOTTINGHAM NG15 0DL

Telephone:0870 870 6622Facsimile:0870 870 6621E-mail:publications@ocr.org.uk

CONTENTS

Advanced GCE Chemistry (Salters) (7887)

Advanced Subsidiary GCE Chemistry (Salters) (3887)

MARK SCHEME ON THE UNITS

Unit	Content	Page
2848	Chemistry of Natural Resources	1
2849	Chemistry of Materials	7
2850	Chemistry for Life	15
2854	Chemistry by Design	21
*	Grade Thresholds	28

Mark Scheme 2848 January 2007

Qu	estio	n	Expected Answers	Marks
1	(a)		Alkene accept triene	1
	(b)	(i)	Red/brown/orange (1); colourless (NOT clear) (1)	2
		(ii)	Electrophilic (1);	2
			Addition (1)	
		(iii)	$C_{10}H_{16}$ + $3Br_2 \rightarrow C_{10}H_{16}Br_6$	2
			Formula of product (1)	
			Balancing (1) give this mark if correct for an addition reaction with Br ₂	
	(c)	(i)	Water (1) allow H ₂ O	1
		(ii)	Tertiary (1);	2
			C to which OH is bonded is itself bonded to 3 other C's/no H on C to which OH is bonded/ 3 alkyl groups on C. (1)	
		(iii)	There would be no reaction (1);	2
			Tertiary alcohols (<i>or defined as above</i>) (can't be oxidised by potassium dichromate (VI) solution). (1) <i>ecf from (ii) if secondary (primary): oxidised (1); to ketone(aldehyde)/orange to green (1)</i>	
	(d)	(i)	Elimination (1) ALLOW dehydration	1
		(ii)	Conc (1); Sulphuric acid/H ₂ SO ₄ / phosphoric acid/ H ₃ PO ₄ (1); Heat/reflux/high temp (1) <i>mark separately if "acid" mentioned. Ignore</i> <i>pressure</i> or	3
			Pass vapour (1); over alumina/pumice(AW) (1); at 300°C / heated alumina (1)	
	(e)		$ \begin{array}{c c} X & H \\ - & \\ $	1
			repeats	

	(f)		5 from:	5
			A Electron movements (1) stated or implied	
			 B in the molecules create an uneven distribution of charge, leading to a temporary/instantaneous dipole (1); 	
			C The temporary/instantaneous dipole in one molecule <u>creates/induces</u> a dipole in a neighbouring molecule, then attracts it (1);	
			D Compound C has stronger* instantaneous dipole – induced dipole forces than myrcene because compound C is linear/straight chained/ unbranched <i>ora</i> (1);	
			E This allows greater surface contact/molecules closer together and stronger* intermolecular forces between compound C molecules <i>ora</i> (1);	
			F Stronger* intermolecular forces mean that more energy is needed to overcome them/ harder to break, therefore higher b.p. <i>ora</i> (1);	
			*allow "more" or "greater". Allow "intermolecular bonds"	1
			QWC: Logical, correct use in context of at least three terms below: dipole*; electron; intermolecular; charge; induces*; molecule, branches	
			* but not in "instantaneous dipole- induced dipole"	
			Total mark:	23
2	(a)	(i)	Increasing pressure moves <u>equilibrium</u> (position) (for equation 2.1) to the right/products (1);	2
			This increases (the concentration of) dissolved carbon dioxide (1).	
		(ii)	Both forward and backward reactions are progressing (AW) (1);	2
			The concentration of each chemical remains constant/stays the same (1).	
			<i>or</i> Rate of forward reaction = rate of backward reaction (2);	
		(iii)	The reaction produces H ⁺ ions/protons, (which makes the solution more acidic) (1).	1
		(iv)	$HCO_3^{-}/H_2O(1)$	1
	(b)	(i)	$Ba^{2+}(aq) + SO_4^{2-}(aq) \rightarrow BaSO_4(s)(1)$; ignore correct spectator ions	2
			(1) for state symbols mark for aqueous gives solid (mark separately)	
		(ii)	Funnel with filter paper labelled (1);	2
			connected without leaks (ie showing bung) to side-arm flask with vacuum connection labelled (<i>allow "air out"/"pump" labelled</i>) (1)	
		(iii)	$SO_4^{2-} = (32 + 4 \times 16 =) 96 (1);$	3
			$0.000074 \times 96 = 7.1(04) \times 10^{-3} \text{ g dm}^{-3} (1)$ ecf from stated or implied M_r	
			7.1 x 10^{-3} for s.f. mark (1) mark separately if some working shown	

	(c)	(i)	H H H O δ_{-} H δ_{+} H δ_{+} At least three bent water molecules around an Fe ³⁺ (can be or triangle) (1); H O δ_{-} Fe ³⁺ δ_{-} O H δ_{+} H δ_{+} (1); 2xH and 1xO with the O facing the ion (1); δ_{+} on at least one H, δ_{-} on at least one O (1) or δ_{-} on point of triangle δ_{+} at other end	3	
		(ii)	3d ⁶ 4s ² (2) in either order	2	
			8 electrons (1)	40	
2	(0)	(1)	I otal mark:	18	
3	(a)	(1)	Nitrogen (1);	2	
		(ii)	Nitrogon(I) ovido/ nitrouo ovido (1): decomposition of fortilizoro (1):		
		()			
			Nitrogen(II) oxide/ nitrogen (mon)oxide(s) (1); burning fuel/ exhaust fumes from vehicles/ combination of nitrogen and oxygen in an engine (AW)(1);	4	
			Nitrogen(IV) oxide/ nitrogen dioxide (1); burning fuel/ exhaust fumes from vehicles (AW)		
			Sulphur dioxide/trioxide/oxide(s) (1); roasting metal ores/smelting ores/burning fossil fuels/exhaust fumes from cars (1).		
			Hydrogen sulphide (1); decomposition in landfill/ flatulence/ exhaust from cars with catalytic converter (1)		
			Formulae can be given instead of names (including NO _x and SO _x)		
			Human activity must be a reaction or the result of a reaction and must match named compound. Two different human activities are required.		
	(b)	(i)	(Particle) with an unpaired/lone electron (1)	1	
		(ii)	$CH_3Cl \rightarrow CH_3 + Cl$	2	
			Formula of chloromethane (1); rest of equation (1) <i>ecf for breakdown</i> of another chloroalkane		
		(iii)	Catalyst and reactants are in the same phase/state (1)	1	
		(iv)	The minimum combined (kinetic) (1); energy on collision of particles	2	
			that will lead to a reaction (AW) (1) <i>first mark depends on second</i> "breaking bonds in reactants" scores (1)		
		(v)	Rate of reaction increases (1);	3	
			Molecules have more energy/ move faster (1);		
			More collisions with energy greater than the activation enthalpy/energy/ sufficient energy/ more successful collisions (1)		
		(vi)	7.69 x 10 ⁻¹⁹ /6.63 x 10 ⁻³⁴ (1);	2	
			= 1.16 x 10 ¹⁵ Hz (1) no ecf allow 1.2 with "2sf"		

		(vii)	uv/radiation (1);	2
			does not have enough energy/ does not have a high enough frequency (1)	
			REJECT for second mark answers that imply intensity of radiation	
	(c)	(i)	(anhydrous) sodium sulphate <i>or other suitable salt/</i> silica <u>gel</u> (1) <i>ALLOW conc. H</i> ₂ SO ₄	1
		(ii)	The bonds need a specific frequency to make them (1); vibrate	2
			(more) (1); second mark if bond or molecule mentioned	
		(iii)	CO_2 absorbs/traps radiation that would otherwise be released into space /radiated by the Earth (1);	2
			and turns it into kinetic energy that increases atmospheric temperature (1)	
			Total mark:	24
4	(a)		Sedimentation/ flocculation (1) allow filtration	1
	(b)		$3 O_2 \rightarrow 2 O_3 (1)$ allow halved	1
	(C)	(i)	0 (1); -1 (<i>NOT 1-</i>) (1)	2
		(ii)	Chlorine is reduced during the reaction/gains electrons/decrease in ox. state (1);	2
			and the sulphur/H ₂ S is oxidised/ loses electrons/increases in ox. state (1)	
	(d)	(i)	$I_2 + 2 Cl^-(1)$ ignore ss	2
			Chlorine is more reactive/ stronger oxidising agent / has higher electron affinity than iodine <i>ora for iodine</i> (1)	
		(ii)	Cl_2 + 2 e ⁻ \rightarrow 2 Cl^- or halved	2
			Correct species (1); balancing (1) <i>allow for "chlorine plus electron" equation</i>	
		(iii)	$14.0 \times 0.00100 (1)/1000 = 1.4 \times 10^{-5} \text{ mol} (1) \text{ no ecf}$	2
		(iv)	Burette allow one error from: wrong "r"s; wrong "t"s; no terminal "e"	1
		(v)	Answer to 4(d) (iii) \div 2 (0.5 moles S ₂ O ₃ ²⁻ = 7.0 x 10 ⁻⁶ mol) (1)	1
		(vi)	Answer to $4(d)(iii) \div 2$ / answer to $4(d)(v)$ (=7.0 x 10 ⁻⁶ mol) (1)	1
	(e)		Any ONE from: Chlorine is poisonous/toxic/is a toxin/harmful/irritant (1); Damaging to respiratory system/irritating to eyes (1); Water has unacceptable smell/taste (1). Not 'dangerous'.	1
	(f)		Any ONE from:	
			bleach/ disinfectant (1); not cleaning	
			making PVC (1); not polymers or plastics	1
			<u>making</u> solvents/CFCs/insecticides/HC <i>l</i> (1) bromine extraction (1)	
	(g)	(i)	(1,1,1 -)trichloromethane (1)	1

(ii)(iii)	(ii) $\begin{array}{c} CI \\ \delta^{-} \\ H - C \\ \delta^{+} \\ CI \\ CI \\ H; \\ \delta^{-} \\ \delta$		one line, one dotted (or reverse wedge) and one wedge plus one of these repeated (or two wedges and two dotted lines <i>lines must not be</i> <i>opposite;</i> <i>or shown as</i> <i>tetrahedron</i>	1+1
(iv)	Mention of electronegativity or ex Comparison of <u>chlorine</u> and <u>carbo</u> Molecule's shape is tetrahedral (Molecule has permanent dipole a balance/ not symmetrical (1). QWC: At least 2 consecutive sen punctuation and grammar with or sheet	planation (1); on (1); 1); <i>allow if writte</i> is the charges/ c tences which ha ily one error in a	<i>n on diagram above</i> dipoles do not ave correct spelling, all (1) see QWC	4
	1		Total mark:	25

Mark Scheme 2849 January 2007

Question	ו	Expected answers	Marks
1 (a)		Primary: <u>order/sequence</u> of amino acids (1); secondary: folding of amino acid chains / hydrogen bonding between chains/forms helices or sheets AW (1); tertiary: folding of protein/overall shape (1).	3
(b)	(i)	with moderately concentrated/4-6M (HCl) acid (1);	2
	(ii)	(Paper) chromatography (1) <i>allow</i> thin-layer	1
(C)	(i)	(The closer the chains) the stronger the intermolecular interactions/ the more ordered the arrangement the more/greater the number of intermolecular forces (1).	1
	(ii)	⁺ H ₃ N $-$ C $-$	1
	(iii)	Very strong interactions/ionic/electrostatic bonds between particles (1).	1
	(iv)	$H_2N \xrightarrow{CH_3} O \xrightarrow{H_3} O H_$	2
	(v)	Alanine has optical isomers/is chiral/ has D and L isomers/enantiomers (1); only one of the isomers will fit into enzyme and so react AW (1).	2
Total ma	ark		13
2 (a)		One mark each for points in bold and then any one other up to a total of 5 marks: Spot small sample of liquid mixture on (base) line (1); on plate/sheet (1); solvent in beaker below sample (1); cover beaker with lid/film (1); leave until solvent front nears top of plate; locating spots with iodine/ uv radiation (1); 2 spots seen AW (1).	5
(b)	(i)	⁺ Na ⁻ O H ₂ O (1).	2

(ii)	H ₃ COCO OCOCH ₃ Formula for ethanoyl group correct (1); Both groups correct and in correct positions (1); HCI (1).	3
(C) (I)	$1050-3640 \text{ cm}^{-1} \text{ C-O};$ $1050-1300 \text{ cm}^{-1} \text{ C-O};$ 1 mark for the correct frequency and bond for each peak (2).	2
(ii)	Purple, allow any shade of purple/violet but NOT pink (1).	1
(d)	Equilibrium for ethanoic acid is further to the right / ethanoic acid is more dissociated/ionised ORA (1); stability of CH ₃ COO ⁻ is greater ORA AW (1); electrons more delocalised in CH ₃ COO ⁻ ion ORA AW (1).	3
(e) (i)	In C and D Chem shifts at 0.5-4.5 and at 4.5-10.0/ <i>states</i> phenolic and alcoholic OHs have different chemical shifts AW (1); Ratio of 2:1 indicates C and 1:2 indicates D / C has a greater intensity for the alcoholic OH peak than the phenolic OH peak ORA/compare either phenolic OH groups or alcoholic OH groups/3 different OH environments in C , only 2 in D AW (1).	2
(ii)	$\begin{array}{c} CH_{3} & CH_{3} \\ CH_{3} & CH_{3} \\ C=0 & C=0 \\ HO & 0 \\ HO & -CH - C - CH_{2} \\ \end{array}$ An ester group correct (1) correct formula overall (1).	2
Total mark		20

3	(a)		$2 \operatorname{Fe} S_2(s) + 7O_2(g) + 2H_2O(l) \longrightarrow 2 \operatorname{Fe}^{2+}(aq) + 4 \operatorname{SO}_4^{2-}(aq) + 4 \operatorname{H}^+(aq)$	1
	(b)	(i)	The more positive the standard electrode potential the more powerful is the oxidising agent AW/ oxidation is the loss of electrons (1); Oxygen and water under neutral conditions have a less positive/more negative E^{e} than iron(II)/iron(III) (and would not oxidise the Fe ²⁺ (aq) ions) AW (1); with acid the oxygen's E^{e} is now more positive/less negative than iron(II)/iron(III) and will oxidise the Fe ²⁺ (aq) ions (1). <i>Alternative marking scheme</i> : E^{e} cell must be positive for a reaction to take place (1); E^{e} cell for O ₂ + H ₂ O = -(0.37 V) no reaction (1); E^{e} cell for O ₂ + H ⁺ = +(0.46 V) reaction takes place (1).	3
		(ii)	$4Fe^{2+} + O_2 + 4H^+ \rightarrow 4Fe^{3+} + 2H_2O$ Species correct (1); balanced (1).	2
	(c)		Name: water/aqua <i>allow</i> H ₂ O (1); number: 6 (1); shape: octahedral (1).	3
	(d)	(i)	iron(III) hydroxide <i>allow</i> Fe ₂ O ₃ .xH ₂ O/hydrated iron(III) hydroxide (1);	1
		(11)	1.	3
	(e)	<i>(</i>))	Partly filled/incomplete d shell/energy levels/orbitals (1).	1
	(1)	(I)	Liganu exchange / substitution/displacement (1).	1
	(a)	(11)	Coloninelly (1).	1
	(g)	(i) (ii)	Moles of MnO_4^- = (16.6/1000) x 0.010 = 0.000166 (1); moles of iron(II) = 5 x (16.6/1000) x 0.010 = 0.000830 (1) ecf; concentration = 0.0332 mol dm ⁻³ (1) ecf; answer must be to 3 sig. figs.	3
		(iii)	The first <u>permanent</u> (pale) pink colour (1).	1
Tot	tal ma	rk		21
4	(a)		E condensation F condensation G condensation H addition all correct (2); one incorrect (1).	2
	(b)		Ester (1).	1
	(c)		Biodegradable AW (1).	1

(d)	Any five from the following six marking points Hydrogen-bonding is stronger than permanent dipole-permanent dipole forces which are stronger than instantaneous dipole-induced dipole forces / hydrogen bonding is the strongest type of	5
	Intermolecular force (1);	
	\mathbf{G} + pd-pd forces (1):	
	E has hydrogen bonding (1);	
	hydrogen bonding stronger in E than F because of shape/structure of polymer chains (1);	
	aramids/benzene rings have flat molecules/ can get very close/ more hydrogen bonds per unit length (1).	
		1
	QWC see separate sheet for detailed description (1).	
(e) (i)	aqueous acid / alkali NOT concentrated OR weak acid (1); (heat under) reflux (1).	2
(ii)	нон ₂ ссн ₂ он нооссоон	2
	If alkali is used then the COOH group should be written as COO ⁻ : 1 mark for each stucture (2).	
(f)	At low temperatures polymers may become brittle/AW (1); temperature below polymer T_g (1); due to chains unable to move over each other (without	3
-	preaking/chain movement not possible (without breaking) (1).	4 -
i otal Mark		17

Mark Scheme

2849

January 2007

11

5	(a)	(i)	Outer electron structure of cobalt is d7 s2 / full outer s level/ only 7 electrons in d level (1);	2
		(::)	Cobail's outer electrons are in the sid and 4th shells AW (1).	2
		(11)	they form ions in different oxidation states / available d orbitals AW (1);	2
			oxidation states can interconvert during the reaction so are unchanged at the end AW / (can use d orbitals/electrons) to bond reactants to surface (1);	
			activation enthaloy/energy is lowered (1)	
		(iii)	Liquid state/ allow soluble or in same state as methanol/reactants or	1
		(,	aqueous (1).	•
	(b)	(i)	Colorimetry (1) because colour change in reaction colourless to brown (1);	2
			or pressure measurements (1) because a decrease in moles/amount of gas in the reaction/ allow volume change (1);	
			or pH measurement (1) because solution of gases becomes more acidic as reaction proceeds (1);	
			or bubble gases through limewater (1) measure rate of cloudiness occurring AW (1).	
		(ii)	Graph as below (1);	4
			[NO]	
			time	
			describes/draws tangent at $t=0$ (1):	
			measures gradient of tangent (1).	
			gradient = rate of reaction.	
	(C)	(i)	[NO] 2nd [CO] zero [O ₂] zero;	3
L	. /		1 mark each (3).	
		(ii)	Rate = $k \times [NO]^2$	2
			Rate = $k(1)$;	
			$[NO]^2$ ecf only if equation begins with Rate = (1).	

Mark Scheme

(iii)	e.g k = $5.0 \times 10^{-4} / (2.50 \times 10^{-4})^2 (1)$ ecf; = $8000 (1)$ ecf if scale factor is missing k = 0.8 ; Units: mol ⁻¹ dm ³ s ⁻¹ allow ecf for incorrect rate equation only if equation begins with Rate = (1).	3
Total		19

Mark Scheme 2850 January 2007

1	(a)	(i)	Either NO or NO ₂ ; (1) allow N ₂ O; N ₂ O ₅ NOT N ₂ O ₄	1
		(ii)	hydrocarbon(s) (1) allow named hydrocarbon unburnt fuel	1
		()	and H = hydro C = carbon	
		(iii)	incomplete/partial combustion (of hydrocarbons/petrol/fuel/carbon)/	1
			fuel burns with insufficient oxygen AW	
		(iv)	loss/removal of oxygen/ON goes down/goes from + to zero (1)	1
			<u>N</u> gains (control) of electrons	
	(b)	(i)	Any three of : longer/bigger molecules in diesel;	3 max
			more air/oxygen needed (AW) (for complete combustion;)	
			lower (operating) temperatures; lower H to C ratio;	
			Partial/incomplete combustion of fuel;	
		(ii)	reaction of N_2 with O_2 from <u>air(1)</u> ; at high temps in engine(1);	3
			CON: N from fuel or NO _x	
			lower combustion temp in diesel engine/less O_2 to react with $N_2(1)$	
	(c)		Step 2(1); Steps 3,4 & 5(1); Step 6(1)	3
	(d)	(i)	reaction A = cracking; B=isomerisation; C=reforming; D=	4
			reforming	
		(ii)	skeletal (must read like skeletal eg skeletal)	1
		(iii)	C ₉ H ₂₀ (1);	4
			3(4)-ethyl-4(3)-methylhexane (1) for hexane; 1 for ethyl then	
			methyl;	
			1 for correct numbers) ignore commas or dashes	
		(iv)	higher octane number/rating/less auto ignition NOT better or	1 23
			branched	

2	(a)	(i)	-2 (2-)	1
		(ii)	reasonable attempt at a tetrahedral shape(1) NOT 90°;	2
			correct use of wedges/dashes(allow dotted line) (1)	
			No O atoms shown max 1	
	(b)	(i)	frequency/energy(1)	1
		(ii)	emit light:- electrons raised to higher electronic levels(1);	5
			electrons drop back to lower levels losing energy (as 'light')1	
			discrete lines:- energy levels 'quantized' (AW)/drops give out a	
			specific	
			amount of energy/drops between levels(1	
			relates to specific frequencies/(Δ)E=hu(1)	
			sets of lines:- each set represent drops to a different lower level/	
			mention of specific example eg Lyman(1)	
			Excited <u>ATOMS/no mention of electrons</u> max <u>four</u> marks	
			NB these points could be gained from an <u>annotated</u> diagram.	
		(iii)	Similarities – lines (spectrum)(1);lines in same place/same	3
			spacing/lines converge(1)	
			Difference – <u>black</u> lines (on a bright background)	
			<u>compared</u> to <u>coloured</u> lines (on a black background)(1);	
	(c)		ease of thermal decomposition of carbonates; solubility of	2
			carbonates;	
			insolubility of hydroxides/nitrates; AW/ora two max	
			must use named clasof compound to gain marks	
Tot	tal			14

3	(a)		Number of electrons(1); Number of protons(1) (allow protons and							
			_electrons)							
			protons <u>plus</u> electrons zero							
	(b)	(i)	properties/reactivities	of the elements fitted I	petter (when swapped)/	1				
			fitted with fluorine,chl	orine,bromine/halogens	s(1) CON atomic number					
		(ii)				3				
			Isotope	Percentage	isotopic mass x	•				
			tallurium 400	abundance	relative abundance					
			tellurium-120	0.09	11					
			tellurium-122	2.46	300					
			tellurium-123	0.87	107					
			tellurium 125	4.01	974					
tellurium-125 6.99 8				0/4						
	tollurium 128 31 70 4060									
			tellurium-128 31.79 4069							
			tellurium-130 34.48 4482							
		(iii)	addition and divided t figs. (128); ecf	oy 100 only (12772/100	i); one mark for 3 sig.	1				
	(C)	(i)	group 1/alkali(ne) me	tale(1)		1				
		(ii)				-				
	(-1)	()	goes to a minimum tr	ien nses/goes down the		1				
	(a)	(1)	$2Cu(s) + O_2(g) \rightarrow 2C$	uO(s) one mark for co	rrectly balanced	2				
			equation(1);							
			accept multiples/halve	es etc one mark for sta	ate symbols					
			(independent)(1);							
		(ii)	1/24 mole of air(0.042	2)(1); 1/24 x 80/100 (0.0	033) mole of N ₂ (1)	2				
		(iii)	mole of Mg = x3 d(ii) ecf (0.099)(1); mass = x 24(2.4g)(1) (x24.3 = 2.41 OK)							
	(e)	(i)	$^{238}_{92}$ U + $^{1}_{0}$ $n(1) \rightarrow$	$^{239}_{93}Np(1) + ^{0}_{-1}e(1)$	(ecf for n and/or e)	3				
		(ii)	protons positively cha	arged(1); therefore rep	elled by <u>nucleus</u> (1);	2 [20]				
			(protons repelled by p	oositive nucleus – 2 ma	rks)					

(a)	(i)	Enthalpy change when <u>1 mole</u> of compound(1); formed from elements	3
		in their standard states NOT conditions(1)	
	(ii)	look for{-9736(2); -13276(1); +9736(1); 9736(1)} ecf's apply	2
	(iii)	aluminium and nitrogen(1); ΔH_f = zero for elements/AI and N unchanged(1); second mark can be independent	2
(b)		any three from $CO_2/CO/C/H_2O/NO_x$ (3) should be names but correct	3
		formulae OK	
(c)	(i)	correct bonding electrons shown(two different sets of three between	2
		the <u>two</u> N atoms)(1);	
		lone pair on each of two N(1); maximum one mark if all electrons	
		same.	
	(ii)	high bond enthalpy/(very) strong (triple) bond	2
		/lots of energy needed to break it AW (1);	
		nucleus attracted strongly to bonding electrons (1);	
(d)		Gases formed(1); gases have higher entropy than solids(1);	4
		(if above discussed in terms of liquids max 1.)	
		more particles/(moles of) products(1);	
		more ways of arranging products/more disordered(1); NOT atoms	
Total			18

Paper total

[75]

Mark Scheme 2854 January 2007

1 (a)		н	2
			2
		H shared pairs (1); lone pairs on oxygen (1)	
(b)	(i)	greater yield of/more methanol (1); equilibrium (position) moves to side with fewer molecules (1) faster (1); Greater <u>frequency/probability/chance</u> (AW) of collisions (1) CON for second mark if "higher pressure makes particles move faster"	4
	(ii)	Exothermic (1); On raising temperature, <u>equilibrium</u> (position) moves to left/smaller yield (1) ALLOW 1 for "expense does not justify increased rate"	2
(c)	(i)	240 - 262 – 198 (1) = -220 (1). Score (1) for +220 (sign must be present)/failure to double value for hydrogen (-89)/correct answer (with sign) from incorrect expression	2
	(ii)	Fewer molecules on right (AW)/fewer ways of arrangement/less disorder (1) <i>no ecf</i>	1
(d)	(i)	$K_p = pCH_3OH/pCO \times p^2H_2$ (2) (1) for one error: [] not p (but ALLOW p with []) inverted square omitted NO credit if addition occurs	2
	(ii)	$K_{\rm p}$ = 90/2 x 4 (ecf from (i) unless added) = 11/11.3/11.25 (1) atm ⁻² (1) mark separately, ecf from (i)	2
(e)		The reactants (that go into a chemical process)/ the chemicals (AW) that go into a chemical process/reaction (1) NOT raw materials	1
(f)	(i)	2CH ₃ OH + O ₂ \rightarrow HCHO + 2H ₂ O species(1) balancing (1)	2
	(ii)	н-с, , ,	1
(g)	(i)	nucleophilic (1); addition(1)	2
	(ii)	H—O O H—C—C—O—H H—COOH (1) Rest of structure (1) Allow OH no ambiguous attachments (2)-hydroxyethanoic acid (1) no ecf; IGNORE number before hydroxy	3

(h)	methanol (1); O-H/alcohol at 3300 (cm ⁻¹); (1) no C=O (at 1700)/C-O at 1050 (1); <i>two from:</i> two environments; four protons/ratio 3:1; CH ₃ –O at 3.3; O–H at 2.6 (1)	5
	 QWC Use of three of the terms below in the correct context. (2) Use of two of the terms below in the correct context. (1) peak; absorbance; wavenumber/cm⁻¹; proton (NOT in "proton nmr"); environment; bond; (chemical) shift 	2
		31

2	(a)		N=N ringed(1)	1
	(b)		iron(III) (chloride) (1); goes (from yellow to) purple (AW) (1) 2nd depends on first	2
	(c)		$C_{16}H_{12}ON_2(2)$ (1) for a single error	2
	(d)		A with D or E (1); D with A or B (1) B and C scores (1)	2
	(e)		D (1) phenylamine/aniline/aminobenzene (1) B (1) (1-amino-2- naphthol)	3
	(f)	(i)	CH ₃ Cl/chloromethane (1) AlCl ₃ /aluminium chloride (1) anhydrous or reflux (1) <i>reflux mark if one other scored</i>	3
		(ii)	electrophilic ALLOW Friedel Crafts	1
		(iii)	chromophore	1
		(iv)	<u>electrons</u> promoted to higher energy levels/excited; absorb in visible/ absorb colour; E = hv/ frequency proportional to energy; complementary colour transmitted/reflected NOT emitted (or in terms of colour absorbed) MAX 2 for absorption points if emission also described	4
	(g)	(i)	$\begin{array}{c} \begin{array}{c} & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	3
		(ii)	 two from: A imf in oil permanent dipole-permanent dipole/ instantaneous dipole-induced dipole (1) B imf in water hydrogen bonds (1) C imf between water and dye i-d– i-d. / few/no hydrogen bonds(1) D imf between oil and dye i-d–i.d or description of weak imf(1) and E relative strengths of imfs/ hydrogen bonds strong (in context) (1) F dissolving occurs if bonds broken equals/less than bonds made (AW) (1) 	4
				26

3	(a)	(i)	••••	2
			H H H eight electrons round S(1)	
			two long pairs and two bonding pairs around $S(1)$:	
			two folle pairs and two boliding pairs around 5 (1),	
		(ii)	100 – 112° <i>ecf from (a)(i)</i> (1) (four) pairs of electrons/areas	3
			of negative charge/ lone pairs and bonding pairs (1); repel	
			of departure from angle because of lone pairs (1)	
	(b)	(i)	electronegativities (of S and O) similar/ equal sharing of electrons	1
		(ii)		
		(!!!)	symmetrical (AW) shape (1); dipoles cancel (1)	2
		(111)	н	4
			> δ-	
			м ^Н 8+	
			H ₃ C , IIII	
			js=o δ−	
			H ₃ C •	
			L H	
			нО	
			two water molecules correctly hydrogen bonded (1) pair of partial charges (1) lone pairs <i>on at least one bond</i> (1);	
	(c)	(i)	O-H-O straight <i>twice</i> (1)	
	(0)	(1)	they form S-S bonds (1); that link (protein) chains together/ maintain tertiary structure /3D shape (1) <i>mark separately</i>	2
		(ii)	$(CH_3)_2S + 2H_2O_2 \rightarrow (CH_3)_2SO_2 + 2H_2O$ Species correct (allow	2
			H ₂ formed) (1); Balanced (allow balanced with DMSO for second mark) (1)	
		(iii)	As MSM but with H or C ₂ H ₅ replacing CH ₂ / other structures	1
	()		provided bonding works	•
	(a)		(higher) (specific) heat capacity (1)	3
			hydrogen bonding (1) more energy needed to break/ overcome imf/ make molecules	
			move around (AW)(1)	
				20

4	(a)	(i)	power stations/ car exhaust (1); burning of fuels (1) allow "fuels containing sulphur" for alternative to first mark	2
		(ii)	acid rain (1); <i>two from:</i> attacks buildings damages trees/plants damages/kills fish causes respiratory problems (2)	3
	(b)	(i)	left (of Period)/ metal/ alkaline earth/ Group 2 (1)	1
		(ii)	moles SO ₂ = 15000/24 (= 625) (1); $x74/1000 = 46$ kg (1) 2sf mark separately, provided some calculation is shown (1)	3
	(c)	(i)	IV (1)	1
		(ii)	H⁺ (1) equilibrium sign (1);	2
		(iii)	$K_a = [H^+] [HSO_3^-]/[H_2SO_3]$ (2) inverted or no square brackets (1)	2
		(iv)	$[H^+] = \sqrt{K_a} [H_2 SO_3] = \sqrt{1.5 \times 10^{-3}} = 3.87 \times 10^{-2} (1)$ pH = -log [H ⁺] = 1.4(1) (1) ecf from a calculated value of [H ⁺]	2
		(v)	[H ⁺] = 0.2(1) pH = -log(0.2) = 0.7 (1) no ecf pH = 1 (failure to double [H ⁺]),or 1.3 (from [H ⁺] = 0.5) scores (1)	2
	(d)	(i)	maintains/little change in pH (1); when small (1); amounts of <u>acid or alkali</u> added <i>(allow as part of subsequent explanation)</i> (1); addition of acid, moves equm (position) to left, removing H ⁺ (ora for OH ⁻) (1) reservoir of [HA] and [A ⁻]/large values so H ⁺ concentration hardly	5
			changes (1)	-
		(ii)		
			$[H^+] = K_a \ge 0.001/0.002 (= 7.5 \ge 10^{-3}) (1);$ pH = 2/2.1(2) (1) no ecf pH = 1.52 from inverted ratio scores (1)	2
				26

5 (a)	(i)	OH on CH-OH circled(1) allow CH-OH circled: allow on ducose	1
	(!!)		1
	(11)	HOHaC	2
			-
		НО НО ОП	
		OH (2) for all	
		(1) for two (or three/four with one wrong) allow on glucosamine	
		zero if all carbons circled	
	(iii)		
		ring not planar/ no double bonds/ no delocalisation/ not based on	1
		benzene.	
(b)			
(6)		$-NH_{2}(1) + HCI \rightarrow -NH_{2}^{+}(1)^{\cdot} + CI^{-}(1)$	3
(c)	(i)		-
(0)	(1)	halogenoalkane/chloroalkane	1
	(ii)		
		HCl/(conc) hydrochloric acid/SOCl ₂ /PCl ₅ / NaCl and H ₂ SO ₄ (1)	1
	(iii)		_
		ammonia/NH ₃ (1); heat in sealed tube (AW) (1); second depends	2
	(1).	on first	
	(1V)	nucleophilic (1): substitution (1)	2
(d)	(i)		-
(u)	(1)	condensation allow co-polymerisation	1
	(ii)		
	()	oxidation	1
	(iii)		
	. ,	(secondary) amide <i>NOT peptide</i>	1
	(iv)		
		ethanoic anhydride/ethanoyl chloride NOT ethanoic acid	1
			17

Advanced GCE Chemistry (Salters) (3887/7887) January 2007 Assessment Series

Unit Threshold Marks

Unit		Maximum Mark	а	b	С	d	е	u
2848	Raw	90	69	62	55	48	41	0
	UMS	120	96	84	72	60	48	0
2849	Raw	90	65	57	49	41	34	0
	UMS	90	72	63	54	45	36	0
2850	Raw	75	52	45	39	33	27	0
	UMS	90	72	63	54	45	36	0
2854	Raw	120	85	76	67	58	50	0
	UMS	120	96	84	72	60	48	0
2855	Raw	90	76	68	60	52	44	0
	UMS	90	72	63	54	45	36	0

Specification Aggregation Results

Overall threshold marks in UMS (i.e. after conversion of raw marks to uniform marks)

	Maximum Mark	Α	В	С	D	E	U
3887	300	240	210	180	150	120	0
7887	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	Α	В	С	D	E	U	Total Number of Candidates
3887	14.0	33.7	56.3	78.9	96.6	100.0	368
7887	21.7	55.1	79.7	94.2	97.1	100.0	71

439 Candidates aggregated this series.

For a description of how UMS marks are calculated see: http://www.ocr.org.uk/exam system/understand ums.html

Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

(General Qualifications)

Telephone:01223 553998Facsimile:01223 552627Email:helpdesk@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2007