GCE

Chemistry (Salters)

Advanced GCE A2 7887

Advanced Subsidiary GCE AS 3887

Mark Schemes for the Units

January 2007

OCR (Oxford Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2007
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annersley
NOTTINGHAM
NG15 0DL
Telephone: 08708706622
Facsimile: 08708706621
E-mail: publications@ocr.org.uk

CONTENTS

Advanced GCE Chemistry (Salters) (7887)
 Advanced Subsidiary GCE Chemistry (Salters) (3887)

MARK SCHEME ON THE UNITS

Unit Content Page2848Chemistry of Natural Resources1
2849
Chemistry of Materials 7
2850
Chemistry for Life 15
2854
Chemistry by Design 21

* Grade Thresholds 28

Mark Scheme 2848 January 2007

Question	Expected Answers	Marks
1 (a)	Alkene accept triene	1
(b) (i)	Red/brown/orange (1); colourless (NOT clear) (1)	2
(ii)	Electrophilic (1); Addition (1)	2
(iii)	```C Formula of product (1) Balancing (1) give this mark if correct for an addition reaction with }\mp@subsup{\textrm{Br}}{2}{```	2
(c) (i)	Water (1) allow $\mathrm{H}_{2} \mathrm{O}$	1
(ii)	Tertiary (1); C to which OH is bonded is itself bonded to 3 other C 's/no H on C to which OH is bonded/ 3 alkyl groups on C. (1)	2
(iii)	There would be no reaction (1); Tertiary alcohols (or defined as above) (can't be oxidised by potassium dichromate (VI) solution). (1) ecf from (ii) if secondary (primary): oxidised (1); to ketone(aldehyde)/orange to green (1)	2
(d) (i)	Elimination (1) ALLOW dehydration	1
(ii)	Conc (1); Sulphuric acid $/ \mathrm{H}_{2} \mathrm{SO}_{4} /$ phosphoric acid/ $\mathrm{H}_{3} \mathrm{PO}_{4}$ (1); Heat/reflux/high temp (1) mark separately if "acid" mentioned. Ignore pressure or Pass vapour (1); over alumina/pumice(AW) (1); at $300^{\circ} \mathrm{C} /$ heated alumina (1)	3
(e)	 allow brackets (and "n") Allow $\mathrm{C}_{8} \mathrm{H}_{13}$ for X. NOT several repeats	1

\begin{tabular}{|c|c|c|}
\hline (f) \& \begin{tabular}{l}
5 from: \\
A Electron movements (1) stated or implied \\
\(\mathbf{B}\) in the molecules create an uneven distribution of charge, leading to a temporary/instantaneous dipole (1); \\
C The temporary/instantaneous dipole in one molecule creates/induces a dipole in a neighbouring molecule, then attracts it (1); \\
D Compound C has stronger* instantaneous dipole - induced dipole forces than myrcene because compound C is linear/straight chained/ unbranched ora (1); \\
E This allows greater surface contact/molecules closer together and stronger* intermolecular forces between compound C molecules ora (1); \\
F Stronger* intermolecular forces mean that more energy is needed to overcome them/ harder to break, therefore higher b.p. ora (1); \\
*allow "more" or "greater". Allow "intermolecular bonds" \\
QWC: Logical, correct use in context of at least three terms below: dipole*; electron; intermolecular; charge; induces*; molecule, branches \\
* but not in "instantaneous dipole- induced dipole"
\end{tabular} \& 5

1

\hline \& Total mark: \& 23

\hline 2 (a) (i) \& | Increasing pressure moves equilibrium (position) (for equation 2.1) to the right/products (1); |
| :--- |
| This increases (the concentration of) dissolved carbon dioxide (1). | \& 2

\hline (ii) \& | Both forward and backward reactions are progressing (AW) (1); The concentration of each chemical remains constant/stays the same (1). |
| :--- |
| or Rate of forward reaction = rate of backward reaction (2); | \& 2

\hline (iii) \& The reaction produces H^{+}ions/protons, (which makes the solution more acidic) (1). \& 1

\hline (iv) \& $\mathrm{HCO}_{3}^{-} / \mathrm{H}_{2} \mathrm{O}(1)$ \& 1

\hline (b) (i) \& | $\mathrm{Ba}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})$ (1); ignore correct spectator ions |
| :--- |
| (1) for state symbols mark for aqueous gives solid (mark separately) | \& 2

\hline (ii) \& Funnel with filter paper labelled (1); connected without leaks (ie showing bung) to side-arm flask with vacuum connection labelled (allow "air out"/"pump" labelled) (1) \& 2

\hline (iii) \& | $\mathrm{SO}_{4}{ }^{2-}=(32+4 \times 16=) 96(1) ;$ |
| :--- |
| $0.000074 \times 96=7.1(04) \times 10^{-3} \mathrm{~g} \mathrm{dm}^{-3}$ (1) ecf from stated or implied M_{r} 7.1×10^{-3} for s.f. mark (1) mark separately if some working shown | \& 3

\hline
\end{tabular}

(c) (i)	 at least three bent water molecules around an Fe^{3+} (can be or triangle) (1) ; 2 xH and 1 xO with the O facing the ion (1); $\delta+$ on at least one H, δ - on at least one O (1) or $\delta-$ on point of triangle $\delta+$ at other end	3
(ii)	$3 d^{6} 4 s^{2}(2)$ in either order 8 electrons (1)	2
	Total mark:	18
3 (a) (i)	Nitrogen (1); Oxygen (1)	2
(ii)	Nitrogen(I) oxide/ nitrous oxide (1); decomposition of fertilisers (1); Nitrogen(II) oxide/ nitrogen (mon)oxide(s) (1); burning fuel/ exhaust fumes from vehicles/ combination of nitrogen and oxygen in an engine (AW)(1); Nitrogen(IV) oxide/ nitrogen dioxide (1); burning fuel/ exhaust fumes from vehicles (AW) Sulphur dioxide/trioxide/oxide(s) (1); roasting metal ores/smelting ores/burning fossil fuels/exhaust fumes from cars (1). Hydrogen sulphide (1); decomposition in landfill/ flatulence/ exhaust from cars with catalytic converter (1) Formulae can be given instead of names (including NO_{x} and SO_{x}) Human activity must be a reaction or the result of a reaction and must match named compound. Two different human activities are required.	4
(b) (i)	(Particle) with an unpaired/lone electron (1)	1
(ii)	$\mathrm{CH}_{3} \mathrm{Cl} \rightarrow \mathrm{CH}_{3}+\mathrm{Cl}$ Formula of chloromethane (1); rest of equation (1) ecf for breakdown of another chloroalkane	2
(iii)	Catalyst and reactants are in the same phase/state (1)	1
(iv)	The minimum combined (kinetic) (1); energy on collision of particles that will lead to a reaction (AW) (1) first mark depends on second "breaking bonds in reactants" scores (1)	2
(v)	Rate of reaction increases (1); Molecules have more energy/ move faster (1); More collisions with energy greater than the activation enthalpy/energy/ sufficient energy/ more successful collisions (1)	3
(vi)	$\begin{aligned} & 7.69 \times 10^{-19} / 6.63 \times 10^{-34}(1) \text {; } \\ & =1.16 \times 10^{15} \mathrm{~Hz}(1) \text { no ecf allow } 1.2 \text { with " } 2 s f \text { " } \end{aligned}$	2

(vii)	uv/radiation (1); does not have enough energy/ does not have a high enough frequency (1) REJECT for second mark answers that imply intensity of radiation	2
(c) (i)	(anhydrous) sodium sulphate or other suitable salt/silica gel (1) ALLOW conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$	1
(ii)	The bonds need a specific frequency to make them (1); vibrate (more) (1); second mark if bond or molecule mentioned	2
(iii)	CO_{2} absorbs/traps radiation that would otherwise be released into space /radiated by the Earth (1); and turns it into kinetic energy that increases atmospheric temperature (1)	2
	Total mark:	24
4 (a)	Sedimentation/ flocculation (1) allow filtration	1
(b)	$3 \mathrm{O}_{2} \rightarrow 2 \mathrm{O}_{3}$ (1) allow halved	1
(c) (i)	0 (1); -1 (NOT 1-) (1)	2
(ii)	Chlorine is reduced during the reaction/gains electrons/decrease in ox. state (1); and the sulphur/ $\mathrm{H}_{2} \mathrm{~S}$ is oxidised/ loses electrons/increases in ox. state (1)	2
(d) (i)	$\mathrm{I}_{2}+2 \mathrm{Cl}^{-}$(1) ignore ss Chlorine is more reactive/ stronger oxidising agent / has higher electron affinity than iodine ora for iodine(1)	2
(ii)	$\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}$or halved Correct species (1); balancing (1) allow for "chlorine plus electron" equation	2
(iii)	14.0×0.00100 (1)/ $1000=1.4 \times 10^{-5} \mathrm{~mol}$ (1) no ecf	2
(iv)	Burette allow one error from: wrong "r"s; wrong "t"s; no terminal "e"	1
(v)	Answer to 4(d) (iii) $\div 2\left(0.5\right.$ moles $\left.\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}=7.0 \times 10^{-6} \mathrm{~mol}\right)(1)$	1
(vi)	Answer to 4(d)(iii) $\div 2 /$ answer to 4(d)(v) (=7.0 $\times 10^{-6} \mathrm{~mol}$) (1)	1
(e)	Any ONE from: Chlorine is poisonous/toxic/is a toxin/harmful/irritant (1); Damaging to respiratory system/irritating to eyes (1); Water has unacceptable smell/taste (1). Not 'dangerous'.	1
(f)	Any ONE from: bleach/ disinfectant (1); not cleaning making PVC (1); not polymers or plastics making solvents/CFCs/insecticides/ HCl (1) bromine extraction (1)	1
(g) (i)	(1,1,1 -)trichloromethane (1)	1

(ii)(iii)	(ii) (1) ignore $\delta+$ on chlorines	(iii)	one line, one dotted (or reverse wedge) and one wedge plus one of these repeated (or two wedges and two dotted lines lines must not be opposite; or shown as tetrahedron	1 + 1
(iv)	Mention of electronegativity or explanation (1); Comparison of chlorine and carbon (1); Molecule's shape is tetrahedral (1); allow if written on diagram above Molecule has permanent dipole as the charges/ dipoles do not balance/ not symmetrical (1). QWC: At least 2 consecutive sentences which have correct spelling, punctuation and grammar with only one error in all (1) see QWC sheet			4
			Total mark:	25

Mark Scheme 2849 January 2007

Question	Expected answers	Marks
1 (a)	Primary: order/sequence of amino acids (1); secondary: folding of amino acid chains / hydrogen bonding between chains/forms helices or sheets AW (1); tertiary: folding of protein/overall shape (1).	3
(b) (i)	with moderately concentrated/4-6M (HCl) acid (1); (Heat under) reflux (1).	2
(ii)	(Paper) chromatography (1) allow thin-layer.	1
(c) (i)	(The closer the chains) the stronger the intermolecular interactions/ the more ordered the arrangement the more/greater the number of intermolecular forces (1).	1
(ii)	 correct formula, allow COO^{-}(1).	1
(iii)	Very strong interactions/ionic/electrostatic bonds between particles (1).	1
(iv)	 correct formula, allow COOH (1); amide group (1).	2
(v)	Alanine has optical isomers/is chiral/ has D and L isomers/enantiomers (1); only one of the isomers will fit into enzyme and so react AW (1).	2
Total mark		13
2 (a)	One mark each for points in bold and then any one other up to a total of 5 marks: Spot small sample of liquid mixture on (base) line (1); on plate/sheet (1); solvent in beaker below sample (1); cover beaker with lid/film (1); leave until solvent front nears top of plate; locating spots with iodine/ uv radiation (1); 2 spots seen AW (1).	5
(b) (i)		2

(ii)	 Formula for ethanoyl group correct (1); Both groups correct and in correct positions (1); HCl (1).	3
(c) (i)	$\begin{aligned} & 3600-3640 \mathrm{~cm}^{-1} \mathrm{O}-\mathrm{H} \text { or } 3200-3600 \mathrm{~cm}^{-1} \mathrm{O}-\mathrm{H} ; \\ & 1050-1300 \mathrm{~cm}^{-1} \mathrm{C}-\mathrm{O} ; \\ & 1 \text { mark for the correct frequency and bond for each peak (2). } \end{aligned}$	2
(ii)	Purple, allow any shade of purple/violet but NOT pink (1).	1
(d)	Equilibrium for ethanoic acid is further to the right / ethanoic acid is more dissociated/ionised ORA (1); stability of $\mathrm{CH}_{3} \mathrm{COO}^{-}$is greater ORA AW (1); electrons more delocalised in $\mathrm{CH}_{3} \mathrm{COO}^{-}$ion ORA AW (1).	3
(e) (i)	In C and D Chem shifts at 0.5-4.5 and at 4.5-10.0/ states phenolic and alcoholic OHs have different chemical shifts AW (1); Ratio of 2:1 indicates \mathbf{C} and 1:2 indicates \mathbf{D} / \mathbf{C} has a greater intensity for the alcoholic OH peak than the phenolic OH peak ORA/compare either phenolic OH groups or alcoholic OH groups/3 different OH environments in \mathbf{C}, only 2 in D AW (1).	2
(ii)	 An ester group correct (1) correct formula overall (1).	2
Total mark		20

3 (a)	$2 \mathrm{Fe} \mathrm{S}_{2}(\mathrm{~s})+7 \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow 2 \mathrm{Fe}^{2+}(\mathrm{aq})+4 \mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})+4 \mathrm{H}^{+}(\mathrm{aq})$	1
(b) (i)	The more positive the standard electrode potential the more powerful is the oxidising agent AW/ oxidation is the loss of electrons (1); Oxygen and water under neutral conditions have a less positive/more negative E^{\ominus} than iron(II)/iron(III) (and would not oxidise the $\mathrm{Fe}^{2+}(\mathrm{aq})$ ions) AW (1); with acid the oxygen's E^{\ominus} is now more positive/less negative than iron(II)/iron(III) and will oxidise the $\mathrm{Fe}^{2+}(\mathrm{aq})$ ions (1). Alternative marking scheme: E^{\ominus} cell must be positive for a reaction to take place (1); E° cell for $\mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}=-(0.37 \mathrm{~V})$ no reaction (1); cell for $\mathrm{O}_{2}+\mathrm{H}^{+}=+(0.46 \mathrm{~V})$ reaction takes place (1).	3
(ii)	$4 \mathrm{Fe}^{2+}+\mathrm{O}_{2}+4 \mathrm{H}^{+} \rightarrow 4 \mathrm{Fe}^{3+}+2 \mathrm{H}_{2} \mathrm{O}$ Species correct (1); balanced (1).	2
(c)	Name: water/aqua allow $\mathrm{H}_{2} \mathrm{O}$ (1); number: 6 (1); shape: octahedral (1).	3
(d) (i)	iron(III) hydroxide allow $\mathrm{Fe}_{2} \mathrm{O}_{3} \cdot \mathrm{xH}_{2} \mathrm{O} /$ hydrated iron(III) hydroxide (1);	1
(ii)	1. $\begin{equation*} \ddot{K}_{\mathrm{c}}=\left[\left[\mathrm{Fe}\left(\mathrm{H}_{2}-\underline{O}\right)_{5} \frac{\left.(\mathrm{OH})]^{2+}(\mathrm{aq})\right] \times\left[\mathrm{H}^{ \pm}(\mathrm{aq})\right]}{\left.\left[\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)\right)_{6}\right]^{3+}(\mathrm{aq})\right]}\right.\right. \tag{1} \end{equation*}$ 2. The enthalpy change of the reaction / whether the reaction is exothermic or endothermic (1); 3. Iron(III) hydroxide is solid (therefore no homogeneous system)/ precipitates out (so equilibrium moves to right hand side) AW (1).	3
(e)	Partly filled/incomplete d shell/energy levels/orbitals (1).	1
(f) (i)	Ligand exchange / substitution/displacement (1).	1
(i)	Colorimetry (1).	1
(g) (i)	(Dilute) sulphuric acid (1).	1
(ii)	Moles of $\mathrm{MnO}_{4}^{-}=(16.6 / 1000) \times 0.010=0.000166$ (1); moles of iron $(\mathrm{II})=5 \times(16.6 / 1000) \times 0.010=0.000830$ (1) ecf; concentration $=0.0332 \mathrm{~mol} \mathrm{dm}^{-3}(1)$ ecf; answer must be to 3 sig. figs.	3
(iii)	The first permanent (pale) pink colour (1).	1
Total mark		21
4 (a)	E condensation F condensation G condensation H addition all correct (2); one incorrect (1).	2
(b)	Ester (1).	1
(c)	Biodegradable AW (1).	1

(d)	Any five from the following six marking points Hydrogen-bonding is stronger than permanent dipole-permanent dipole forces which are stronger than instantaneous dipole-induced dipole forces / hydrogen bonding is the strongest type of intermolecular force (1); H only id-id forces (1); G + pd-pd forces (1); E has hydrogen bonding (1); hydrogen bonding stronger in \mathbf{E} than \mathbf{F} because of shape/structure of polymer chains (1); aramids/benzene rings have flat molecules/ can get very close/ more hydrogen bonds per unit length (1). QWC see separate sheet for detailed description (1).	5
(e) (i)	aqueous acid / alkali NOT concentrated OR weak acid (1); (heat under) reflux (1).	2
(ii)	$\mathrm{HOH}_{2} \mathrm{C}-\mathrm{CH}_{2} \mathrm{OH}$ If alkali is used then the COOH group should be written as COO : 1 mark for each stucture (2).	2
(f)	At low temperatures polymers may become brittle/AW (1); temperature below polymer T_{g} (1); due to chains unable to move over each other (without breaking)/chain movement not possible (without breaking)	3
Total Mark		17

5 (a) (i)	Outer electron structure of cobalt is d 7 s 2 / full outer s level/ only 7 electrons in d level (1); cobalt's outer electrons are in the 3rd and 4th shells AW (1).	2
(ii)	Any two marking points from three: they form ions in different oxidation states / available d orbitals AW (1); oxidation states can interconvert during the reaction so are unchanged at the end AW / (can use d orbitals/electrons) to bond reactants to surface (1); activation enthalpy/energy is lowered (1).	2
(iii)	Liquid state/ allow soluble or in same state as methanol/reactants or aqueous (1).	1
(b) (i)	Colorimetry (1) because colour change in reaction colourless to brown (1); or pressure measurements (1) because a decrease in moles/amount of gas in the reaction/ allow volume change (1); or pH measurement (1) because solution of gases becomes more acidic as reaction proceeds (1); or bubble gases through limewater (1) measure rate of cloudiness occurring AW (1).	2
(ii)	Graph as below (1); describes/draws tangent at $\mathrm{t}=0$ (1); measures gradient of tangent (1); gradient = rate of reaction.	4
(c) (i)	[NO] 2nd [CO] zero $\quad\left[\mathrm{O}_{2}\right]$ zero; 1 mark each (3).	3
(ii)	$\begin{aligned} & \text { Rate }=\mathrm{k} \times[\mathrm{NO}]^{2} \\ & \text { Rate }=\mathrm{k}(1) ; \\ & {[\mathrm{NO}]^{2} \text { ecf only if equation begins with Rate }=(1) .} \end{aligned}$	2

(iii)	e.g $\mathrm{k}=5.0 \times 10^{-4} /\left(2.50 \times 10^{-4}\right)^{2}(1)$ ecf; $=8000(1)$ ecc if scale factor is missing $\mathrm{k}=0.8 ;$ Units: mol $\mathrm{mm}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1}$ allow ecf for incorrect rate equation only if equation begins with Rate $=(1)$.	$\mathbf{3}$
Total		19

Mark Scheme 2850 January 2007

1 (a) (i)	Either NO or NO_{2}; (1) allow $\mathrm{N}_{2} \mathrm{O} ; \mathrm{N}_{2} \mathrm{O}_{5}$ NOT $\mathrm{N}_{2} \mathrm{O}_{4}$	1
(ii)	hydrocarbon(s) (1) allow named hydrocarbon unburnt fuel and $\mathrm{H}=$ hydro $\mathrm{C}=$ carbon	1
(iii)	incomplete/partial combustion (of hydrocarbons/petrol/fuel/carbon)/ fuel burns with insufficient oxygen AW	1
(iv)	loss/removal of oxygen/ON goes down/goes from + to zero (1) $\underline{\mathrm{N}}$ gains (control) of electrons	1
(b) (i)	Any three of: longer/bigger molecules in diesel; more air/oxygen needed (AW) (for complete combustion;) lower (operating) temperatures; lower H to C ratio; Partial/incomplete combustion of fuel;	3 max
(ii)	reaction of N_{2} with O_{2} from air(1); at high temps in engine(1); CON: N from fuel or NO_{x} lower combustion temp in diesel engine/less O_{2} to react with $\mathrm{N}_{2}(1)$	3
(c)	Step 2(1); Steps 3,4 \& 5(1); Step 6(1)	3
(d) (i)	reaction $\mathrm{A}=$ cracking; $\mathrm{B}=$ isomerisation; $\mathrm{C}=$ reforming; $\mathrm{D}=$ reforming	4
(ii)	skeletal (must read like skeletal eg skeletal)	1
(iii)	$\mathrm{C}_{9} \mathrm{H}_{20}(1) ;$ 3(4)-ethyl-4(3)-methylhexane (1) for hexane; 1 for ethyl then methyl; 1 for correct numbers) ignore commas or dashes	4
(iv)	higher octane number/rating/less auto ignition NOT better or branched	123

2 (a) (i)	-2 (2-)	1
(ii)	reasonable attempt at a tetrahedral shape(1) NOT 90°; correct use of wedges/dashes(allow dotted line) (1) No O atoms shown max 1	2
(b) (i)	frequency/energy(1)	1
(ii)	emit light:- electrons raised to higher electronic levels(1); electrons drop back to lower levels losing energy (as 'light')1 discrete lines:- energy levels 'quantized' (AW)/drops give out a specific amount of energy/drops between levels(1 relates to specific frequencies $/(\Delta) E=h u(1)$ sets of lines:- each set represent drops to a different lower level/ mention of specific example eg Lyman(1) Excited ATOMS/no mention of electrons max four marks NB these points could be gained from an annotated diagram.	5
(iii)	Similarities - lines (spectrum)(1);lines in same place/same spacing/lines converge(1) Difference - black lines (on a bright background) compared to coloured lines (on a black background)(1);	3
(c)	ease of thermal decomposition of carbonates; solubility of carbonates; insolubility of hydroxides/nitrates; AW/ora two max must use named clasof compound to gain marks	2
Total		14

3 (a)	Number of electrons(1); Number of protons(1) (allow protons and _electrons) protons plus electrons zero			2
(b) (i)	properties/reactivities of the elements fitted better (when swapped)/ fitted with fluorine,chlorine,bromine/halogens(1) CON atomic number			1
(ii)	Isotope tellurium-120 tellurium-122 tellurium-123 tellurium-124 tellurium-125 tellurium-126 tellurium-128 tellurium-130 one mark for corre addition and divid figs. (128); ecf	Percentage abundance 0.09 2.46 0.87 4.61 6.99 18.71 31.79 $\mathbf{3 4 . 4 8}$ pletion of table 0 only (12772	isotopic mass \mathbf{x} relative abundance 11 300 107 572 874 2357 4069 $\mathbf{4 4 8 2}$ ne mark (ecf) for one mark for 3 sig.	3
(iii)	neutron(1)			1
(c) (i)	group 1/alkali(ne) metals(1)			1
(ii)	goes to a minimum then rises/goes down then up AW(1)			1
(d) (i)	$2 \mathrm{Cu}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CuO}(\mathrm{s})$ one mark for correctly balanced equation(1); accept multiples/halves etc one mark for state symbols (independent)(1);			2
(ii)	1/24 mole of air(0.042)(1); $1 / 24 \times 80 / 100$ (0.033) mole of $\mathrm{N}_{2}(1)$			2
(iii)	$\begin{aligned} & \text { mole of } \mathrm{Mg}=\mathrm{x} 3 \mathrm{~d}(\mathrm{ii}) \text { ecf }(0.099)(1) \text {; mass }=x 24(2.4 \mathrm{~g})(1)(\mathrm{x} 24.3= \\ & \text { 2.41 OK) } \end{aligned}$			2
(e) (i)	${ }_{92}^{238} \mathrm{U}+{ }_{0}^{1} n(1) \rightarrow{ }_{93}^{239} N p(1)+{ }_{-1}^{0} e(1) \quad$ (ecf for n and/or e)			3
(ii)	protons positively charged(1); therefore repelled by nucleus(1); (protons repelled by positive nucleus -2 marks)			2 [20]

(a) (i)	Enthalpy change when 1 mole of compound(1); formed from elements in their standard states NOT conditions(1)	3
(ii)	look for..... $\{-9736(2) ;-13276(1)$; +9736(1); 9736(1)\} ecf's apply	2
(iii)	aluminium and nitrogen(1); $\Delta H_{f}=$ zero for elements/Al and N unchanged(1); second mark can be independent	2
(b)	any three from $\mathrm{CO}_{2} / \mathrm{CO} / \mathrm{C} / \mathrm{H}_{2} \mathrm{O} / \mathrm{NO}_{x}(3)$ should be names but correct formulae OK	3
(c) (i)	correct bonding electrons shown(two different sets of three between the two N atoms)(1); Ione pair on each of two $N(1)$; maximum one mark if all electrons same.	2
(ii)	high bond enthalpy/(very) strong (triple) bond /lots of energy needed to break it AW (1); nucleus attracted strongly to bonding electrons (1);	2
(d)	Gases formed(1); gases have higher entropy than solids(1); (if above discussed in terms of liquids max 1.) more particles/(moles of) products(1); more ways of arranging products/more disordered(1); NOT atoms	4
Total		18
Paper total		[75]

Mark Scheme 2854 January 2007

1 (a)		2
(b) (i)	greater yield of/more methanol (1); equilibrium (position) moves to side with fewer molecules (1) faster (1); Greater frequency/probability/chance (AW) of collisions (1) CON for second mark if "higher pressure makes particles move faster"	4
(ii)	Exothermic (1); On raising temperature, equilibrium (position) moves to left/smaller yield (1) ALLOW 1 for "expense does not justify increased rate"	2
(c) (i)	240-262-198(1)=-220 (1). Score (1) for +220 (sign must be present)/failure to double value for hydrogen (-89)/correct answer (with sign) from incorrect expression	2
(ii)	Fewer molecules on right (AW)/fewer ways of arrangement/less disorder (1) no ecf	1
(d) (i)	$K_{\mathrm{p}}=\mathrm{pCH} \mathrm{H}_{3} \mathrm{OH} / \mathrm{pCO} \times \mathrm{p}^{2} \mathrm{H}_{2}(2)$ (1) for one error: [] not p (but ALLOW p with []) inverted square omitted NO credit if addition occurs	2
(ii)	$K_{\mathrm{p}}=90 / 2 \times 4 \text { (ecf from (i) unless added) }=11 / 11.3 / 11.25 \text { (1) }$ $\mathrm{atm}^{-2} \text { (1) mark separately, ecf from (i) }$	2
(e)	The reactants (that go into a chemical process)/ the chemicals (AW) that go into a chemical process/reaction (1) NOT raw materials	1
(f) (i)	$2 \mathrm{CH}_{3} \mathrm{OH}+\mathrm{O}_{2} \rightarrow \mathrm{HCHO}+2 \mathrm{H}_{2} \mathrm{O}$ species(1) balancing (1)	2
(ii)		1
(g) (i)	nucleophilic (1); addition(1)	2
(ii)	 COOH (1) Rest of structure (1) Allow OH no ambiguous attachments (2)-hydroxyethanoic acid (1) no ecf; IGNORE number before hydroxy	3

\begin{tabular}{|c|c|c|}
\hline (h) \& \begin{tabular}{l}
methanol (1); \\
O-H/alcohol at \(3300\left(\mathrm{~cm}^{-1}\right)\); (1) \\
no \(\mathrm{C}=\mathrm{O}\) (at 1700)/C-O at 1050 (1); \\
two from: two environments; four protons/ratio 3:1; \(\mathrm{CH}_{3}-\mathrm{O}\) at 3.3 ; \\
\(\mathrm{O}-\mathrm{H}\) at 2.6 (1) \\
QWC Use of three of the terms below in the correct context. (2) \\
Use of two of the terms below in the correct context. (1) \\
peak; absorbance; wavenumber/ \(\mathrm{cm}^{-1}\); proton (NOT in "proton \\
nmr"); environment; bond; (chemical) shift
\end{tabular} \& 5

2

\hline \& \& 31

\hline
\end{tabular}

2 (a)	$\mathrm{N}=\mathrm{N}$ ringed(1)	1
(b)	iron(III) (chloride) (1); goes (from yellow to) purple (AW) (1) 2nd depends on first	2
(c)	$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{ON}_{2}(2)$ (1) for a single error	2
(d)	A with D or E (1); D with A or B (1) B and C scores (1)	2
(e)	D (1) phenylamine/aniline/aminobenzene (1) B (1) (1-amino-2naphthol)	3
(f) (i)	$\mathrm{CH}_{3} \mathrm{Cl} /$ chloromethane (1) $\mathrm{AlCl}_{3} /$ aluminium chloride (1) anhydrous or reflux (1) reflux mark if one other scored	3
(ii)	electrophilic ALLOW Friedel Crafts	1
(iii)	chromophore	1
(iv)	electrons promoted to higher energy levels/excited; absorb in visible/ absorb colour; $\mathrm{E}=\mathrm{hv} /$ frequency proportional to energy; complementary colour transmitted/reflected NOT emitted (or in terms of colour absorbed) MAX 2 for absorption points if emission also described	4
(g) (i)		3
(ii)	two from: A imf in oil permanent dipole-permanent dipole/ instantaneous dipole-induced dipole (1) B imf in water hydrogen bonds (1) C imf between water and dye $\mathrm{i}-\mathrm{d}-\mathrm{i}-\mathrm{d}$. / few/no hydrogen bonds(1) D imf between oil and dye i-d-i.d or description of weak $\operatorname{imf}(1)$ and E relative strengths of imfs/ hydrogen bonds strong (in context) (1) F dissolving occurs if bonds broken equals/less than bonds made (AW) (1)	4
		26

| 3 | (a) | (i) | 2 |
| :--- | :--- | :--- | :--- | :--- |

4 (a) (i)	power stations/ car exhaust (1); burning of fuels (1) allow "fuels containing sulphur" for alternative to first mark	2
(ii)	acid rain (1); two from: attacks buildings damages trees/plants damages/kills fish causes respiratory problems (2)	3
(b) (i)	left (of Period)/ metal/ alkaline earth/ Group 2 (1)	1
(ii)	moles $\mathrm{SO}_{2}=15000 / 24(=625)(1) ; x 74 / 1000=46 \mathrm{~kg}(1)$ 2sf mark separately, provided some calculation is shown (1)	3
(c) (i)	IV (1)	1
(ii)	H^{+}(1) equilibrium sign (1);	2
(iii)	$K_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{HSO}_{3}^{-}\right] /\left[\mathrm{H}_{2} \mathrm{SO}_{3}\right]$ (2) inverted or no square brackets (1)	2
(iv)	$\begin{aligned} & {\left[\mathrm{H}^{+}\right]=\sqrt{ } \mathrm{K}_{\mathrm{a}}\left[\mathrm{H}_{2} \mathrm{SO}_{3}\right]=\sqrt{ } 1.5 \times 10^{-3}=3.87 \times 10^{-2}(1)} \\ & \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=1.4(1)(1) \text { ecf from a calculated value of }\left[\mathrm{H}^{+}\right] \end{aligned}$	2
(v)	$\begin{aligned} & {\left[\mathrm{H}^{+}\right]=0.2(1) \mathrm{pH}=-\log (0.2)=0.7 \text { (1) no ecf }} \\ & \left.\mathrm{pH}=1 \text { (failure to double }\left[\mathrm{H}^{+}\right]\right) \text {or } 1.3 \text { (from }\left[\mathrm{H}^{+}\right]=0.5 \text {) scores (1) } \end{aligned}$	2
(d) (i)	maintains/little change in pH (1); when small (1); amounts of acid or alkali added (allow as part of subsequent explanation) (1); addition of acid, moves equm (position) to left, removing H^{+}(ora for OH^{-}) (1) reservoir of $[\mathrm{HA}]$ and $\left[\mathrm{A}^{-}\right] /$large values so H^{+}concentration hardly changes (1) QWC 2 sentences only one error in SPAG	5 1
(ii)	$\begin{aligned} & {\left[\mathrm{H}^{+}\right]=K_{\mathrm{a}} \times 0.001 / 0.002\left(=7.5 \times 10^{-3}\right)(1) ;} \\ & \mathrm{pH}=2 / 2.1(2)(1) \text { no ecf } \\ & \mathrm{pH}=1.52 \text { from inverted ratio scores (1) } \end{aligned}$	2
		26

5 (a) (i)	OH on $\mathrm{CH}_{2} \mathrm{OH}$ circled(1) allow $\mathrm{CH}_{2} \mathrm{OH}$ circled; allow on glucose	1
(ii)	 (2) for all (1) for two (or three/four with one wrong) allow on glucosamine zero if all carbons circled	2
(iii)	ring not planar/ no double bonds/ no delocalisation/ not based on benzene. ALLOW oxygen atom	1
(b)	$-\mathrm{NH}_{2}(1)+\mathrm{HCl} \rightarrow-\mathrm{NH}_{3}^{+}(1) ;+\mathrm{Cl}^{-}(1)$	3
(c) (i)	halogenoalkane/chloroalkane	1
(ii)	$\mathrm{HCl} /\left(\right.$ conc) hydrochloric acid/ $\mathrm{SOCl}_{2} / \mathrm{PCl}_{5} / \mathrm{NaCl}$ and $\mathrm{H}_{2} \mathrm{SO}_{4}$ (1)	1
(iii)	ammonia/ NH_{3} (1); heat in sealed tube (AW) (1); second depends on first	2
(iv)	nucleophilic (1); substitution (1)	2
(d) (i)	condensation allow co-polymerisation	1
(ii)	oxidation	1
(iii)	(secondary) amide NOT peptide	1
(iv)	ethanoic anhydride/ethanoyl chloride NOT ethanoic acid	1
		17

Advanced GCE Chemistry (Salters) (3887/7887)
January 2007 Assessment Series

Unit Threshold Marks

Unit	Maximum Mark	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}	\mathbf{u}	
$\mathbf{2 8 4 8}$	Raw	90	69	62	55	48	41	0
	UMS	120	96	84	72	60	48	0
$\mathbf{2 8 4 9}$	Raw	90	65	57	49	41	34	0
	UMS	90	72	63	54	45	36	0
$\mathbf{2 8 5 0}$	Raw	75	52	45	39	33	27	0
	UMS	90	72	63	54	45	36	0
$\mathbf{2 8 5 4}$	Raw	120	85	76	67	58	50	0
	UMS	120	96	84	72	60	48	0
$\mathbf{2 8 5 5}$	Raw	90	76	68	60	52	44	0
	UMS	90	72	63	54	45	36	0

Specification Aggregation Results

Overall threshold marks in UMS (i.e. after conversion of raw marks to uniform marks)

	Maximum Mark	A	B	C	D	E	U
$\mathbf{3 8 8 7}$	300	240	210	180	150	120	0
$\mathbf{7 8 8 7}$	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	B	C	D	E	U	Total Number of Candidates
$\mathbf{3 8 8 7}$	14.0	33.7	56.3	78.9	96.6	100.0	368
$\mathbf{7 8 8 7}$	21.7	55.1	79.7	94.2	97.1	100.0	71

439 Candidates aggregated this series.
For a description of how UMS marks are calculated see:
http://www.ocr.org.uk/exam system/understand ums.html
Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations)

1 Hills Road

Cambridge

CB1 2EU

OCR Customer Contact Centre

(General Qualifications)

Telephone: 01223553998
Facsimile: 01223552627
Email: helpdesk@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

